Kurskatalog forskarutbildning - VT19

  • Ansökan kan ske mellan 2018-10-15 och 2018-11-15
Application closed
Skriv ut
Titel Causal Inference for Epidemiological Research
Kursnummer 2416
Program Epidemiologi
Språk Engelska
Antal högskolepoäng 1.5
Datum 2019-03-11 -- 2019-03-20
Kursansvarig institution Institutionen för medicinsk epidemiologi och biostatistik
Särskild behörighet The students are expected to have taken Epidemiology I, Epidemiology II, Biostatistics I, and Biostatistics II. Exceptions can be made if the students have taken other courses with an equivalent content.
Kursens syfte This course aims to present causal theory and introduces how concepts and methods can be understood within a general methodological framework.
Kursens lärandemål After the course the student will
- be able to use counterfactuals to express and interpret causal queries
- be able to judge when standard statistical methodology is appropriate for causal inference, and when it is not
- be able to use Directed Acyclic Graphs to describe and analyze complex epidemiological scenarios
- be able to use Marginal Structural Models to analyze longitudinal data, with additional help from a skilled statistician
Kursens innehåll Causal inference from observational data is a key task of biostatistics and of allied sciences such as sociology, education, behavioral sciences, demography, economics, health services research, etc. These disciplines share a methodological framework for causal inference that has been developed over the last decades. This course presents this unifying causal theory and shows how biostatistical concepts and methods can be understood within this general framework. The course emphasizes conceptualization but also introduces statistical models and methods for time-varying exposures. Specifically, this course strives to a) formally define causal concepts such as causal effect and confounding, b) identify the conditions required to estimate causal effects, and c) use analytical methods that, under those conditions, provide estimates that can be endowed with a causal interpretation. The (causal) methods can be used under less restrictive conditions than the traditional statistical methods. For example, causal methods allow one to estimate the causal effect of a time-varying exposure in the presence of time-dependent confounders that lie on the causal pathway between exposure and outcome.
Arbetsformer Lectures and group discussions.
Obligatoriska moment
Examination There will be a take-home exam handed out at the last day of the course. Students who fail will be given the opportunity to write at a maximum 2 re-exams. Dates for the re-exams will be announced later.
Kurslitteratur och övriga läromedel - "Causal Inference", by Miguel Hernan and James Robins. Unpublished, but partly avaliable on Miguel's homepage http://www.hsph.harvard.edu/faculty/miguel-hernan/causal-inference-book/ - Slides to be handed out during the course.
Antal studenter 8 - 25
Urval av studenter Eligible doctoral students will be prioritized according to 1) the relevance of the course syllabus for the applicant's doctoral project (according to written motivation), 2) date for registration as a doctoral student (priority given to earlier registration date). To be considered, submit a completed application form. Give all information requested, including a short description of current research and motivation for attending, as well as an account of previous courses taken.
Övrig information Course dates are March 11, 13, 15, 18 and 20. The course is extended over 2 weeks (but still 5 full course days) in order to promote reflection and reinforce learning.
Ytterligare kursledare
Tidigare omdöme av kursen omdöme
Kursansvarig Yudi Pawitan
Institutionen för medicinsk epidemiologi och biostatistik

Kontaktpersoner Gunilla Nilsson Roos
Institutionen för medicinsk epidemiologi och biostatistik
08-524 822 93