Kurskatalog forskarutbildning - VT19

    Startsida
  • Ansökan kan ske mellan 2018-10-15 och 2018-11-15
Application closed
Skriv ut
Titel Fundamentals of statistical modeling
Kursnummer 2959
Program Epidemiologi
Språk Engelska
Antal högskolepoäng 1.5
Datum 2019-05-20 -- 2019-05-24
Kursansvarig institution Institutet för miljömedicin
Särskild behörighet Courses "Epidemiology I: Introduction to epidemiology", "Epidemiology II: Design of epidemiological studies", "Biostatistics I: Introduction for epidemiologists", "Biostatistics II: Logistic regression for epidemiologists" and "Biostatistics III: Survival analysis for epidemiologists"or corresponding courses.
Kursens syfte The purpose of this advanced course is to provide an introduction to the tools of statistical modeling.
Kursens lärandemål After successfully completing this course the students should be able to do the following independently of others:
- explain the concepts of marginal and conditional distributions,
- illustrate the relationship between cumulative distribution, probability mass/density, quantile, sparsity, cumulative hazard, and hazard functions,
- propose possible models for the above functions both marginally and conditionally on covariates,
- identify suitable models to answer scientific research questions and motivate the choice,
- estimate the parameters of the above functions, and
- use standard statistical software, evaluate the fit of the model, and critically interpret the results.
Kursens innehåll The students are introduced to a general framework for data analyses that hinges on creating statistical models. The course focuses on the intricacies and potentials of modeling in a number of examples and real-data applications. The range of the covered examples is broad, and some examples are worked out in greater details than others. The course will enable students to gain an advanced knowledge of (1) random variables, (2) joint and conditional probability distributions, (3) modeling tools, (4) interpretation of statistical models, (5) relations between known methods, (6) estimation tools, (7) computer programming. The students will improve the level of knowledge of the foundations for data analysis, statistical practice, and use of statistical software. They will also be prepared to pursue more advanced studies in statistics. The focus of the course is on analysis of real data and interpretation.
Arbetsformer The course activities are based on lectures and computer exercises, exercises not requiring statistical software, and literature review. We will provide laptop computers to all participants, but participants are welcome to bring their laptops if they prefer.
Obligatoriska moment The individual examination (summative assessment) is compulsory.
Examination Individual written examination based on practical application of the course content, where the student has to show that all the intended learning outcomes have been achieved. Students who do not pass the examination will be offered a second examination within two months from the end of the course.
Kurslitteratur och övriga läromedel There is no required literature. Lecture notes will be provided at the start of the course.
Antal studenter 8 - 25
Urval av studenter Eligible doctoral students, with required prerequisite knowledge, prioritized according to 1) the relevance of the course syllabus for the applicant's doctoral project (according to written motivation), 2) date for registration as a doctoral student (priority given to earlier registration date). To be considered, submit a completed application form. Give all information requested, including a description of current research and motivation for attending, and an account of previous courses taken.
Övrig information The individual examination will be performed as a take­home examination.
Ytterligare kursledare
Tidigare omdöme av kursen omdöme
Kursansvarig Matteo Bottai
Institutet för miljömedicin
08-524 870 24
matteo.bottai@ki.se
Kontaktpersoner Johanna Bergman
Institutet för miljömedicin

johanna.bergman@ki.se

Nobels väg 13

17177
Stockholm